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As a starting point, we compute the descriptive statistics. The sample size is n, and the sample 
estimates of the average and of the standard deviation are: 
 
Arithmetic Average (Mean): 
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Standard Deviation: 
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NORMALITY TEST 
 
As a first approach we use the following three tests. 
 

1)  The test of skewness is done for the null hypothesis H0: normality, versus the alternative 
hypothesis H1: non-normality due to skewness. We compute the skewness coefficient √b1 
and its associated normal approximation Z(√b1) as follows (D'Agostino, 1970; 
D'Agostino and Stephens, 1986):  
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2) The test of kurtosis is performed for the null hypothesis H0: normality, versus the 

alternative hypothesis H1: non-normality due to kurtosis. We compute the kurtosis 
coefficient b2 and its associated normal approximation Z(b2) as follows (Anscombe and 
Glynn, 1983; D'Agostino and Stephens, 1986):  
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3) The omnibus test (D'Agostino and Pearson, 1973) presents a statistic that combines the 

above two tests and produces an omnibus test of normality. The null hypothesis is H0: 
normality, versus the alternative hypothesis H1: non-normality due to either skewness or 
kurtosis. The test statistic is: 

 
K2 = Z2(√b1) + Z2(b2) 
 

When the population is normal, it has approximately a chi-square distribution with 2 degrees of 
freedom. Computational details are presented by D'Agostino et al. (1990).  
 
As a second approach, we use the concept of probability plots. It is based upon a graphical 
presentation of the transformed data that will be approximately laying on a straight line if the 
distribution is normal. Deviations from linearity correspond to various types of non-normality, 
such as skewness, kurtosis, outliers or censoring in the data. Using the approximation of Blom 
(1958) for each data Xi, where Xi is the ith ordered observation from the ordered sample X1 ≤ X2 
≤ ... ≤ Xn, we get a point of coordinates:  
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where Φ is the Laplace function:  
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Similarly, using the approximation of Tukey (1962), we get the coordinates 
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while for the approximation of Van der Waerden (Lehmann, 1975) we get 
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AUTOCORRELATION FUNCTION 
 
When the data are evenly spaced we can compute the normalized autocorrelation function, R(k). 
If the time series is completely uncorrelated, its normalized autocorrelation function is the so-
called δ-Dirac function. As a lack-of-fit test we compute the Q-statistic (Box and Pierce, 1970; 
Ljung and Box, 1978): 
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which follows approximately a χ2 distribution with m degrees of freedom. 
 
LOMB PERIODOGRAM 

 
When the data are evenly spaced: 
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where ∆ is the sampling interval and fc is the Nyquist critical frequency, we can perform a 
Fourier analysis (Brigham, 1974). The data contain complete information about all spectral 
components up to the Nyquist frequency, and scrambled or aliased information about 
components at frequencies larger than the Nyquist frequency. Because in our case the data are 
not evenly spaced, Xi=X(ti), we cannot perform a Fourier analysis. Lomb (1976), using the 
results of Barning (1963) and Vanicek (1971), developed an alternative method to deal with the 
case of unevenly spaced data. Scargle (1982) refined it. The Lomb normalized periodogram, 
spectral power as a function of frequency ω = 2πf, is defined as: 
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where τ is defined by: 
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The constant τ is a kind of offset that makes PN(ω) completely independent of shifting all the ti's 
by a constant. It makes the Lomb periodogram identical to what is obtained if one estimates the 
harmonic content of a data set, at a given frequency ω, by linear least-squares (Lomb, 1976) 
fitting to: 
 

 t)( B + t)( A = X(t) ωω sincos  

 
Therefore, the Lomb periodogram weights the data on a "per point" basis instead of on a "per 
time-interval" basis. We assume that our data are the result of a deterministic component and of 
an independent white Gaussian noise process. The null hypothesis is H0: the data are independent 
white Gaussian random values, versus the alternative hypothesis H1: the data have a 
deterministic component, too. The "normalization" of the Lomb periodogram, through its 
denominator s2 ,means that at any particular ω and in the case of the null hypothesis, PN(ω) has 
an exponential probability distribution with unit average (Scargle, 1982). Therefore, if we scan 
M independent frequencies, the probability that none gives values larger than z is (1 - e-z)M, and 
therefore the significance level of any peak in PN(ω) is: 
 

  )e - (1 - 1 = z)P(> M-z  

 
Horne and Baliunas (1986) give results from extensive Monte Carlo experiments for determining 
M in various cases. In general M depends on the number of frequencies sampled, the number of 
data points n, and their detailed spacing. It turns out that M is nearly equal to n when the data are 
approximately evenly spaced, and when the sampled frequencies "fill" the frequency range up to 
the Nyquist frequency. In our case we have searched up to twice the Nyquist frequency and 
therefore M = 2n. 
 
SENSITIVITY ANALYSIS 

  
High-leverage points are those for which the value of the independent variable is, in some sense, 
far from the rest of the data (Hocking and Pendleton, 1983). The leverage, hi, is defined as: 
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where X is the Nxr matrix containing the values of the r independent variables, xi is a column 
vector containing the elements of the i-th row of X, W is a diagonal matrix containing the 
weights associated with the N experimental points, and ()- denotes the generalized inverse of a 
matrix. In our case, because of the intercept, r = 2. Chatterjee and Hadi (1988) point out that the 
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leverage can be viewed as the equivalent number of observations that determine the i-th 
prediction. Huber (1981) suggests a 0.2 critical value. According to this rule, special attention 
should be given to observations whose predicted values are determined by an equivalent of 5 or 
fewer observations. Because r/N is the average value, Hoaglin and Welsch (1978) suggested 
2r/N as a critical value. 
  
Let define the residual for the i-th experimental point, ei, as the difference between the predicted 
and experimental values. An outlier is a point exhibiting a residual in absolute value by far 
greater than the rest. The outlier is a peculiarity and it should be submitted to a particularly 
careful examination to see if the reason for this peculiarity can be determined. Sometimes the 
outlier provides information due to the fact that it arises from an unusual combination of 
circumstances which may be of special interest to the researcher and requires further 
investigation rather than rejection (Draper and Smith, 1981). Outliers are identified via statistical 
measures based on residuals. Chatterjee and Hadi (1988) introduced the internally studentized 
residual (also called the standardized residual) defined as the usual residual divided by its 
estimated standard deviation: 
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and the externally studentized residual (also called the jackknife residual) estimated when that 
point is deleted from the variance estimation as: 
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An approximate critical values for ISR is √[(N-r)F/(N-r-1+F)] where F is the 100(1-α/N)th  
percentile of the  F1,N-r-1 distribution. Because ESR  has a student distribution with (N-r-1) 
degrees of freedom, a reasonable critical value choice would be 2, while 3 seems to be a 
conservative one (Chatterjee and Hadi, 1988). 
 
Influential points are those observations that excessively influence the fitted regression equation 
as compared to other observations in the data set. Measures for detecting influential points are 
commonly based on the omission approach (i.e. they measure changes in the parameters 
estimates or predicted values when the i-th data point is deleted from the analysis). Cook's 
distance (Cook, 1977) measures the change in the estimated regression coefficients: 
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It combines two measures, giving information about high-leverage points and outliers. Cook and 
Weisberg (1982) refer to it as the potential of the i-th observation in the determination of the 
regression parameters. As critical values, Cook (1977) suggests the percentiles of the Fr,N-r  
distribution. Welsch and Kuh (1977) introduced a similar measure, DFFITS, based on the 
externally studentized residual: 
 

)h - (1 s

h w e = DFFITS 2
ii

2
ii

ii  

 
Hoaglin and Welsch (1978) recommend using 2√(r/N) as a cut-off value, but 2√[1/(N-1)] would 
be a more appropriate choice (Chatterjee and Hadi, 1988).  Belsley et al. (1980) proposed a 
different measure: 
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using 3/N  as a cut-off value for its absolute value in order to identify influential points. 
 
 
We point out that outliers need not be influential points, influential points need not be outliers, 
and while points with large residuals are not desirable, a small residual does not imply that the 
corresponding observation is a typical one. It is expected that some individual data points may be 
flagged as outliers, high-leverage or influential points. Any point falling into one of these 
categories should be carefully examined for accuracy (transcription error, gross error), relevancy 
or special significance (abnormal market conditions). Outliers should always be scrutinized 
carefully. Points with high-leverage that are not influential do not cause any problem, but points 
with high leverage that are influential should be looked at carefully. If no unusual circumstances 
are found, these points should not be deleted as a routine matter (Chatterjee and Hadi, 1988). To 
get an idea of the sensitivity of the data, the parameters should be estimated with and without the 
above mentioned points. 
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