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As a starting point, we compute the descriptivéidtas. The sample size is and the sample
estimates of the average and of the standard dmviate:

Arithmetic Average (Mean):
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Moments:

Standard Deviation:

NORMALITY TEST
As a first approach we use the following threestest

1) The test oBkewnessis done for the null hypothesisHhormality, versus the alternative
hypothesis it non-normality due to skewness. We compute thevskes coefficient'b,
and its associated normal approximationvi¥] as follows (D'Agostino, 1970;
D'Agostino and Stephens, 1986):
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2) The test ofkurtosis is performed for the null hypothesisy:Hhormality, versus the
alternative hypothesis jH non-normality due to kurtosis. We compute thetdsis
coefficient b and its associated normal approximation,Z@s follows (Anscombe and
Glynn, 1983; D'Agostino and Stephens, 1986):
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Z(b2)=
’ [2
9A
3) Theomnibus test (D'Agostino and Pearson, 1973) presentstistgtahat combines the
above two tests and produces an omnibus test ohalidy. The null hypothesis is ¢4

normality, versus the alternative hypothesis ibn-normality due to either skewness or
kurtosis. The test statistic is:

K® = Z%(Vby) + Z(by)

When the population is normal, it has approximatelghi-square distribution with 2 degrees of
freedom. Computational details are presented by@sfino et al. (1990).

As a second approach, we use the concept of piapatots. It is based upon a graphical
presentation of the transformed data that will ppraximately laying on a straight line if the
distribution is normal. Deviations from linearitprcespond to various types of non-normality,
such as skewness, kurtosis, outliers or censonrtga data. Using the approximation of Blom
(1958) for each data;Xwhere X is thei™ ordered observation from the ordered sample X,

< ...< Xy, we get a point of coordinates:

where® is the Laplace function:

u l X2
PU)= | —=e2 dX
N
Similarly, using the approximation of Tukey (1962 get the coordinates

L
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while for the approximation of Van der Waerden (fretmn, 1975) we get
[
-1 o )
(d™( - 1)  Xi )

AUTOCORRELATION FUNCTION

When the data are evenly spaced we can computethgalized autocorrelation function, R(k).
If the time series is completely uncorrelated,ntemalized autocorrelation function is the so-
called d-Dirac function. As a lack-of-fit test we computeetQ-statistic (Box and Pierce, 1970;
Ljung and Box, 1978):

k=m

Q=n(n+2 > (n-k )" R2(K
k=1
m O+/n

which follows approximately g* distribution withm degrees of freedom.
LOMB PERIODOGRAM

When the data are evenly spaced:

Xi= X((-1)A), i=12,...n (27
1

f=—
" 2A

where A is the sampling interval and fs the Nyquist critical frequency, we can perfoam
Fourier analysis (Brigham, 1974). The data cont@mplete information about all spectral
components up to the Nyquist frequency, and scradnlbdr aliased information about
components at frequencies larger than the Nyquesfuency. Because in our case the data are
not evenly spaced, iXX(tj), we cannot perform a Fourier analysis. Lomb (3918ing the
results of Barning (1963) and Vanicek (1971), depetl an alternative method to deal with the
case of unevenly spaced data. Scargle (1982) ckfinelhe Lomb normalized periodogram,
spectral power as a function of frequeney 211, is defined as:

I X)cosaly-1)12 [ X% X)sinagtr)]?
Pn(w)= ——{ S +=

2s Zco§w(ti'7) iZn;sinzCU(ti'T)

wheret is defined by:
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Zn:sin(Za)ti)
tan(2er )= =1
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The constant is a kind of offset that makes (@) completely independent of shifting all ths

by a constant. It makes the Lomb periodogram idahto what is obtained if one estimates the
harmonic content of a data set, at a given frequencby linear least-squares (Lomb, 1976)
fitting to:

X(t)= Acoy at)+ Bsin( at)

Therefore, the Lomb periodogram weights the data dper point" basis instead of on a "per
time-interval" basis. We assume that our dataleadsult of a deterministic component and of
an independent white Gaussian noise process. Theypothesis is kit the data are independent
white Gaussian random values, versus the altemaliypothesis I the data have a
deterministic component, too. The "normalizatiorf' the Lomb periodogram, through its
denominator 5,means that at any particul@rand in the case of the null hypothesig(c§) has

an exponential probability distribution with uniteaage (Scargle, 1982). Therefore, if we scan
M independent frequencies, the probability thatengives values larger tharis (1 - €)™, and
therefore the significance level of any peak ) is:

P> 2=1-(1-¢2)"

Horne and Baliunas (1986) give results from extendlonte Carlo experiments for determining
M in various cases. In general M depends on thebeuraf frequencies sampled, the number of
data points, and their detailed spacing. It turns out thatshhearly equal ta when the data are
approximately evenly spaced, and when the sampéegiéncies "fill" the frequency range up to
the Nyquist frequency. In our case we have searcipetb twice the Nyquist frequency and
therefore M = 2n.

SENSITIVITY ANALYSIS

High-leverage points are those for which the valithe independent variable is, in some sense,
far from the rest of the data (Hocking and Pendigl®83). The leverage,, Iis defined as:

hi=[x' (XTWX ) x] w

whereX is theNxr matrix containing the values of thendependent variableg; is a column
vector containing the elements of théh row of X, W is a diagonal matrix containing the
weights associated with ti¢ experimental points, ang’ denotes the generalized inverse of a
matrix. In our case, because of the intercept,2. Chatterjee and Hadi (1988) point out that the
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leverage can be viewed as the equivalent numbeobstrvations that determine the i-th
prediction. Huber (1981) suggests a 0.2 criticdu@aAccording to this rule, special attention
should be given to observations whose predictedegahre determined by an equivalent of 5 or
fewer observations. BecausiN is the average value, Hoaglin and Welsch (1978pssted
2r/N as a critical value.

Let define the residual for theh experimental poing, as the difference between the predicted
and experimental values. An outlier is a point bkhig a residual in absolute value by far
greater than the rest. The outlier is a peculiaaitgl it should be submitted to a particularly
careful examination to see if the reason for treésubiarity can be determined. Sometimes the
outlier provides information due to the fact thatarises from an unusual combination of
circumstances which may be of special interest e tesearcher and requires further
investigation rather than rejection (Draper andtBi981). Outliers are identified via statistical
measures based on residuals. Chatterjee and Ha88)(Introduced the internally studentized
residual (also called the standardized residualinel@ as the usual residual divided by its

estimated standard deviation:
_ Wi
IS? .= e -
l I Vs?2(1-hi)

and the externally studentized residual (also dalhee jackknife residual) estimated when that
point is deleted from the variance estimation as:
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An approximate critical values for ISR i§(N-r)F/(N-r-1+F)] where F is the 100(@/N)th
percentile of the #\..1 distribution. Because ESR has a student distabutvith (N-r-1)
degrees of freedom, a reasonable critical valudacehwould be 2, while 3 seems to be a
conservative one (Chatterjee and Hadi, 1988).

Influential points are those observations that sgiely influence the fitted regression equation
as compared to other observations in the dataviesisures for detecting influential points are

commonly based on the omission approach (i.e. timeasure changes in the parameters
estimates or predicted values when tka data point is deleted from the analysis). Ce®ok'

distance (Cook, 1977) measures the change in timated regression coefficients:
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It combines two measures, giving information akdugh-leverage points and outliers. Cook and
Weisberg (1982) refer to it as the potential of itk observation in the determination of the
regression parameters. As critical values, Cook7T1%uggests the percentiles of the.F
distribution. Welsch and Kuh (1977) introduced aikr measure, DFFITS, based on the
externally studentized residual:

Wi hi

DFFITS=6& . |—5,.
84'2(1' hi )2

Hoaglin and Welsch (1978) recommend ustvg/N) as a cut-off value, bv[1/(N-1)] would
be a more appropriate choice (Chatterjee and H&#88). Belsley et al. (1980) proposed a
different measure:

RN

using3/N as a cut-off value for its absolute value in otdedentify influential points.

We point out that outliers need not be influengalnts, influential points need not be outliers,
and while points with large residuals are not ddsde, a small residual does not imply that the
corresponding observation is a typical one. Iixigeeted that some individual data points may be
flagged as outliers, high-leverage or influentiaings. Any point falling into one of these
categories should be carefully examined for acgueanscription error, gross error), relevancy
or special significance (abnormal market conditjor@utliers should always be scrutinized
carefully. Points with high-leverage that are ndtuential do not cause any problem, but points
with high leverage that are influential should beled at carefully. If no unusual circumstances
are found, these points should not be deletedraatane matter (Chatterjee and Hadi, 1988). To
get an idea of the sensitivity of the data, theapaaters should be estimated with and without the
above mentioned points.
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